top of page

Publications

Energy levels of bilayer graphene quantum dots

D. R. da Costa, M. Zarenia, Andrey Chaves, G. A. Farias, and F. M. Peeters

Phys. Rev. B 92, 115437

2015

arXiv.org
Acess article

Abstract

Within a tight binding approach we investigate the energy levels of hexagonal and triangular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We study AA- and AB- (Bernal) stacked BLG QDs and obtain the energy levels in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). Our results show that the size dependence of the energy levels is different from that of monolayer graphene QDs. The energy spectrum of AB-stacked BLG QDs with zigzag edges exhibits edge states which spread out into the opened energy gap in the presence of a perpendicular electric field. We found that the behavior of these edges states is different for the hexagonal and triangular geometries. In the case of AA-stacked BLG QDs, the electron and hole energy levels cross each other in both cases of armchair and zigzag edges as the dot size or the applied bias increases.

logo.png

Physics | Federal University of Ceará

Department of Physics

Pici Campus - Block 922
60.455-970 Fortaleza (CE) Brazil

Physics Graduate Program

Telephone: +55 (85) 3366 9906
email: posgrad@fisica.ufc.br

Bachelor's degree in Physics

Telephone: +55 (85) 3366 9485

email: coordenacaobacharelado@fisica.ufc.br
 

Licentiate degree in Physics

Telephone: +55 (85) 3366 9485

email: coordenacao-licenciatura@fisica.ufc.br

  © 2020 Condensed Matter Theory Group - Department of Physics of Federal University of Ceará

Useful Links

Brasao4_vertical_cor_300dpi.png
capes-72012-RGB-1024x939.png
cnpq-logo-7.png
funcap.png

For Members

bottom of page