top of page

Publications

Luminescent Emission of Excited Rydberg Excitons from Monolayer WSe2

Shao-Yu Chen, Zhengguang Lu, Thomas Goldstein, Jiayue Tong, Andrey Chaves, Jens Kunstmann, L. S. R. Cavalcante, Tomasz Woźniak, Gotthard Seifert, D. R. Reichman, Takashi Taniguchi, Kenji Watanabe, Dmitry Smirnov, Jun Yan

Nano Lett. 2019, 19, 4, 2464-2471

2019

arXiv.org
Acess article

Abstract

We report the experimental observation of radiative recombination from Rydberg excitons in a two-dimensional semiconductor, monolayer WSe2, encapsulated in hexagonal boron nitride. Excitonic emission up to the 4s excited state is directly observed in photoluminescence spectroscopy in an out-of-plane magnetic field up to 31 T. We confirm the progressively larger exciton size for higher energy excited states through diamagnetic shift measurements. This also enables us to estimate the 1s exciton binding energy to be about 170 meV, which is significantly smaller than most previous reports. The Zeeman shift of the 1s to 3s states, from both luminescence and absorption measurements, exhibits a monotonic increase of the g-factor, reflecting nontrivial magnetic-dipole-moment differences between ground and excited exciton states. This systematic evolution of magnetic dipole moments is theoretically explained from the spreading of the Rydberg states in momentum space.

logo.png

Physics | Federal University of Ceará

Department of Physics

Pici Campus - Block 922
60.455-970 Fortaleza (CE) Brazil

Physics Graduate Program

Telephone: +55 (85) 3366 9906
email: posgrad@fisica.ufc.br

Bachelor's degree in Physics

Telephone: +55 (85) 3366 9485

email: coordenacaobacharelado@fisica.ufc.br
 

Licentiate degree in Physics

Telephone: +55 (85) 3366 9485

email: coordenacao-licenciatura@fisica.ufc.br

  © 2020 Condensed Matter Theory Group - Department of Physics of Federal University of Ceará

Useful Links

Brasao4_vertical_cor_300dpi.png
capes-72012-RGB-1024x939.png
cnpq-logo-7.png
funcap.png

For Members

bottom of page